This is an automated archive made by the Lemmit Bot.

The original was posted on /r/machinelearning by /u/Successful-Western27 on 2024-04-09 03:26:11.


Anew paper proposes replacing the standard discrete U-Net architecture in diffusion models with a continuous U-Net leveraging neural ODEs. This reformulation enables modeling the denoising process continuously, leading to significant efficiency gains:

  • Up to 80% faster inference
  • 75% reduction in model parameters
  • 70% fewer FLOPs
  • Maintains or improves image quality

Key technical contributions:

  • Dynamic neural ODE block modeling latent representation evolution using second-order differential equations
  • Adaptive time embeddings to condition dynamics on diffusion timesteps
  • Efficient ODE solver and constant-memory adjoint method for faster, memory-efficient training

The authors demonstrate these improvements on image super-resolution and denoising tasks, with detailed mathematical analysis of why the continuous formulation leads to faster convergence and more efficient sampling.

Potential implications:

  • Makes diffusion models practical for wider range of applications (real-time tools, resource-constrained devices)
  • Opens up new research directions at intersection of deep learning, differential equations, dynamical systems

Some limitations exist around (1) Added complexity from ODE solver and adjoint method and (2) I think diffusion models still likely to require significant compute even with improvements.

Full summary here. Arxiv here.

TL;DR: New paper proposes replacing discrete U-Nets in diffusion models with continuous U-Nets using neural ODEs, enabling up to 80% faster inference, 75% fewer parameters, and 70% fewer FLOPs while maintaining or improving image quality. Key implications: more efficient and accessible generative models, new research directions in continuous-time deep learning.