This is an automated archive made by the Lemmit Bot.
The original was posted on /r/vxjunkies by /u/Wide_Wash7798 on 2024-10-31 11:49:27+00:00.
My child is pretty set on a career in industrial VX. Unfortunately, they are going to a small college without a dedicated VX major. As we all know, classic problems like encabulation involve mechanical and electrical engineering. But I keep hearing that encabulation is no longer as big a research area compared to aperturation and heterosimulation, and VX is more interdisciplinary than ever. Here are our notes so far:
- EE: For signal processing these days more than hands-on stuff or EM. For example tracking a graphon through reticulated torsion flutes, or cisducer optimization. When working with older systems sometimes you still need to hand-solder circuits. Lots of buzz about heterosimulation reducing carbon footprint compared to full simulation, not sure if this will work out.
- Quantum or plasma physics. Quantum effects are key in VX, most of this is beyond me. Lots of industry demand for better plasma aperturation at higher energies, and this is likely to continue for as long as we can’t magically aperturate the oscillators. Dirac helices used in aperturation are basically modified stellarators.
- Something with good pathways to engineering management. Given the events of 2022, we’ll never forget the horrible consequences of contaminated samarium in safety-critical parts. With enough superlimation leverage, the next big disaster could potentially be prevented. But this seems like basically a management problem, not a technical one.
What looks best here, and am I missing anything?
You must log in or register to comment.