Astrophysical radio sources are embedded in turbulent magnetised environments. In the 1 MHz sky, solar radio bursts are the brightest sources, produced by electrons travelling along magnetic field lines from the Sun through the heliosphere. We demonstrate that the magnetic field not only guides the emitting electrons, but also directs radio waves via anisotropic scattering from density irregularities in the magnetised plasma. Using multi-vantage-point type III solar radio burst observations and anisotropic radio wave propagation simulations, we show that the interplanetary field structure is encoded in the observed radio emission directivity, and that large-scale turbulent channelling of radio waves is present over large distances, even for relatively weak anisotropy in the embedded density fluctuations. Tracing the radio emission at many frequencies (distances), the effects of anisotropic scattering can be disentangled from the electron motion along the interplanetary magnetic field, and the emission source locations are unveiled. Our analysis suggests that magnetic field structures within turbulent media could be reconstructed using radio observations and is found consistent with the Parker field, offering a novel method for remotely diagnosing the large-scale field structure in the heliosphere and other astrophysical plasmas.
This is an automated archive made by the Lemmit Bot.